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Really big interferometer

Figure: https://www.britannica.com/topic/Laser-Interferometer-Gravitational-wave-
Observatory/media/1/1562918,/205865
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FIG. 1. Schematic view of a LIGO interferometer.

Figure: A. Gillespie and F. Raab (1994)
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Thermal Noise using Normal-Mode Expansion

optical mode: ywip,0,z) miwo??ﬂé&;?ﬁ;.u.zy
wave vector: K ' frequency: w,
ona-dimensional point mass on spring
laser beam MAss: o, m
wave vector: K frequency: w, u
a=+—54t—
T muw2 A2
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Normal-Mode Expansion

thermal noise contribution at 100 Hz (10°* m?/Hz)

Sx(f) ~ Zn 4T (PH(W)

apmw? - w
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Issues with Normal-Mode Expansion

@ Assumption that different normal modes have independent Langevin forces

@ For a small laser beam diameter, the sum over normal modes converges very slowly
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Use of generalized fluctuation-dissipation theorem

Consider a beam interacting with test mass Measurement of fluctuation of x

x(t) = [ FwE O

where f is the distribution of the beam intensity

[finer=1

Spectral density of generalized fluctuation-dissipation theorem

Su(f) = hg RelY (1)
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Use of generalized fluctuation-dissipation theorem

driving force F(t) and as the interaction term in the Hamiltonian

Hint = —F(t)x

Hyy = / PRy, )dr

where P is the pressure of F over impact area

P(7,t) = F()f (7)
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Use of generalized fluctuation-dissipation theorem

suppose we apply a oscillating pressure on the rest mass
P(7,t) = Focos(27tft)f (7)
Then the admittance is then given as
Y(f) = 27fx(f) /F(f)
where the real component is given by

2Wdiss
F§

[Re[Y(f)| =
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Spectral density of test mass

Zka Wdiss
Sx(f) = 7T2f2 F(z)

© Apply oscillating pressure
@ determine the work dissipated
© derive the spectral density
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Thermal noise due to homogeneously distributed damping

friction is conventionalized by an imaginary part of the material's Young's modulus

E = Eo[1+ ¢(f)]
Power Dissipated is
Wiiss = 27Tﬂlmax¢(f)
U is the energy of elastic deformation of the rest mass

2

Umax = —55— (1_ 2)1[ +O( )]

7T2E01’
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APPENDIX: THE STRAIN ENERGY IN A TEST MASS
SUBJECTED TO A GAUSSIAN DISTRIBUTED
SURFACE PRESSURE

The objective of this appendix is to derive Eq. (14) of
Sec. 111 for the energy of elastic strain in a cylindrical test
mass when the pressure P(r) = Fy f(r) is applied to one of
its circular faces. (As was discussed in Sec. III, we can as-
sume that the pressure is constant in time since LIGO's de-
tection frequencies are much lower than the lowest normal-
mode frequency.) For a circular laser beam with a Gaussian
intensity profile (7) is given by [cf. Eq. (13)]

fn= —'Je 2, (A1)
where we assume that the center of the light spot coincides
with the center of the test-mass circular face.

If the radius of the laser beam ry, is small compared to the
size of the test mass, we can approximate the test mass by an
infinite elastic half-space. Then our calculation of the elastic
energy is correct up to a fractional accuracy of O(ro/R),
where R is the characteristic size of the test mass.

Let y(r) be the normal displacement of the surface at
location r under the action of the pressure P(r). In the linear
approximation of small strains,

w7 -f G(r.P)P(F)dr, (A2)

where G(r.r") is a Green's function. The calculation of G is
a nontrivial albeit standard exercise in elasticity theory [10],
which gives
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(A3)

where o is the Poisson ratio and E, the Young's modulus of
the material. The elastic energy stored in the material is

1 1-0% [ P(NP(I) ,
J'mm,)dz, P jﬁf"ﬁ
1 1-g? oAt
= ————d'rd'r’, (A4
= Eory "j JPtrt—arrcost. 0 Ll

where @ is the angle between r and . The integral in the
last term of Eq. (Ad) (as was pointed out by Glenn Sober-
mann) can be taken by introducing *'polar’’ coordinates R
and &: r=Rcosd, r'=Rsing. One then integrates out the
radial part of the integrand and expands the remaining angu-
lar part in a power series with respect to cosf; termwise
integration of this power series finally yields Eq. (14) [up to
a fractional error of O(ry/R)]

U, =—,—F§’ (1-0?)1. (A5)
= 7 Eor ’
where

=1.87322. (A6)

It can be shown that if, instead of an infinite half-space, we
consider a finite cylindrical test mass, the leading fractional
correction to the elastic energy is of the order O(ry/R).




Thermal noise due to homogeneously distributed damping

Gives expression for spectral density

4k, T (1

=2 )1¢[1+o< )

5x(f) =

Comparing estimation
© using Normal Mode with 30 Modes S¢R(100Hz) ~ 8.0 * 10~40m?/Hz
@ using generalized fluctuation dissipation theorem S, (100Hz) ~ 8.7 * 10~40m?/Hz
© software aided numerical computation of U S,(100Hz) ~ 8.76 * 10~40m?/Hz
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Improvement over normal modes method

@ Becomes more exact when the laser diameter is small
@ Less computationally intensive

© Simpler process
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Case of surface damping

The power dissipated at each point of the material is proportional to the square of the stress at t

o Fo F2
Wcoatzngdlss o (_2)21,% — _g
"o "o

Sx(Boundary) o :—2
0

S (bulk) o
1o
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one dimensional illustration
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Improvement over normal modes method

© Becomes more exact when the laser diameter is small
@ Less computationally intensive

© Simpler process

@ Accounts for surface of beam imperfections better
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Sources

Q LIGO Lab — Caltech — MIT. (n.d.). LIGO Lab — Caltech.
https://www.ligo.caltech.edu/
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